Experimental study of the Couple Characteristics of the Refrigerants and Vortex Tube
نویسندگان
چکیده
Vortex tube is a simple energy separation device, also known as Ranque tube or Hilsch tube, which can separate a high-pressure stream into two different hot and cold streams. Since its simple structure and unique temperature separation characteristics, vortex tube has been widely used in various industries. In recent years, with the in-depth study of the vortex tube, it has been found that compared with the conventional expansion expander and the throttle valve, the vortex tube is much more structurally simple and efficient, respectively. Researchers have proposed the use of the vortex tube in the refrigeration system in order to reduce the throttling loss and improve system efficiency. This has important implications for improving the performance of the system, to achieve energy saving and emission reduction. However, due to the different physical properties of the different working fluid, energy separation in the vortex tube are not the same. In the existing studies on the vortex tube, the working fluid mainly used air, nitrogen, carbon dioxide and other natural refrigerants, the research about the influence of refrigerants is few. Due to the fact that the vortex tube is increasingly used in refrigeration and heating system, it is urgent to study the coupling characteristics between vortex tube and refrigerants and find optimal conditions in different systems. The different temperature separation effect of the refrigerants in the vortex tube in the low inlet pressure (300kPa) have been studied in our previous study and three fluid characteristics (specific heat ratio, kinematic viscosity, thermal conductivity) were considered as main influencing factors of energy separation. The influence of different working fluid in high pressure conditions has not been considered, which part of research work in this paper is. The coupling characteristic between vortex tube and refrigerants is studied and the closed loop system is constructed. R134a, R744, R32, R227ea are selected as the working fluids, experiments are carried out in different inlet pressure (500kPa~ 850kPa), different inlet temperature (308.15K~333.15K), different cold flow ratio (20%~97%). The temperature separation of different working fluids under different conditions are explored and the influences of different characteristics of the working fluids on the temperature separation process are discussed. These studies can help more profound understand the vortex tube temperature separation process, and also has certain significance on the applications of the vortex tube in the refrigeration system.
منابع مشابه
2D Numerical Simulation of a Micro Scale Ranque-Hilsch Vortex Tube
In this study, fluid flow and energy separation in a micro-scale Ranque-HilschVortex Tube are numerically investigated. The flow is assumed as 2D, steady,compressible ideal gas, and shear-stress-transport SST k-W is found to be a bestchoice for modeling of turbulence phenomena. The results are in a good agreementwith the experimental results reported in the literature. The results show that f...
متن کاملPerformance Evaluation of a Ranque-Hilsch Vortex Tube with Optimum Geometrical Dimensions
A brass Vortex Tube (VT) with interchangeable parts is used to determine the optimum cold end orifice diameter, main tube length and diameter. Experim...
متن کاملOptimization of Low Pressure Vortex Tube via Different Axial Angles of Injection Nozzles
In this article, a Ranque–Hilsch Vortex Tube has been optimized utilizing axial angles for nozzles. Effect of nozzles angles on the flow behavior has been investigated by computational fluid dynamics (CFD) techniques. A finite volume approach with the standard k–ε turbulence model has been used to carry out all the computations. The dimensions of studied vortex tubes are kept the same for all m...
متن کاملAn Experimental Investigation of the Flowfield over a Low Aspect Ratio Wing
A wind tunnel investigation was performed to study the flow field over a 70° swept sharped edge delta wing model at high angles of attack. The experiments were conducted in the subsonic wind tunnel at the Department of Mechanical Engineering, Sharif University of Technology. Velocity profiles have been measured using a special pitot tube and hot wire anemometer at angles of attacks of 10 to 35 ...
متن کاملAn Experimental Investigation of the Flowfield over a Low Aspect Ratio Wing
A wind tunnel investigation was performed to study the flow field over a 70° swept sharped edge delta wing model at high angles of attack. The experiments were conducted in the subsonic wind tunnel at the Department of Mechanical Engineering, Sharif University of Technology. Velocity profiles have been measured using a special pitot tube and hot wire anemometer at angles of attacks of 10 to 35 ...
متن کامل